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Nearest Neighbors (NN)

• Given a query, find the label associated with the closest point in 
the training data.

• “Closest” is determined using Euclidean distance:
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• If multiple points equally near, break ties arbitrarily.
• For example, return the label of just one of the nearest neighbors.
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K-Nearest Neighbors (k-NN)

• NN was unreasonable when many points are equally close but 
have different labels.

• NN is also unreasonable when many points are close to the query 
(but not precisely equal in distance).

• k-NN improves upon NN by returning the average of the labels of 
the k nearest neighbors.
• Data structures like KD-Trees and Ball-Trees can be used to efficiently find 

the k nearest neighbors to a query point.
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Weighted k-Nearest Neighbors (Weighted k-NN)

• The k-NN algorithm does not distinguish between the cases:
• All k neighbors are roughly the same distance from the query.
• Some of the k neighbors are much closer than others.

• Instead, it gives the same weight to all k neighbors.
• Weighted k-NN weights each of the k points based on their 

distance: 
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Weighted k-NN (cont.)

• Many choices of weighting functions.
• One common choice is the Gaussian kernel:
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• Sigma scales how quickly weights decrease with distance.

𝑖th nearest neighbor’s features

Query features
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Tuning Hyperparameters

• Hyperparameter: a variable, like k, that changes the behavior of 
the algorithm, and which is often set by the data scientist applying 
the algorithm.

• Grid Search: Specify possible values for each hyperparameter 
(often equally spaced), train models using all possible 
combinations of hyperparameter settings, and select the ones 
that result in the best fit.
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Classification with NN-Variants

• NN: No changes needed!
• k-NN: The predicted label comes from a majority vote of the k 

nearest neighbors.
• Weighted k-NN: Each neighbor’s vote is weighted in the vote.

• Note: We will focus on regression for a while and will then return 
to classification after a few lectures.
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Confidence Intervals

• We shouldn’t always trust the sample performance metrics.
• Sample MSE: 1
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• This is a statistic or sample statistic.
• It could be quite different from the true MSE: 𝐄 𝑌 − ෠𝑌

2
.

• This is a parameter or population statistic.

• We can compute confidence intervals for sample statistics.
• If the sample statistic is an average (of normally distributed values) then 

± 1.96 × SE is a 95% confidence interval.
• SE is the standard error: 𝑆𝐸 =

𝜎

𝑛
, where 𝜎 is the sample standard deviation with Bessel’s 

correction.

• We often report performance metrics with ±𝑋, where X is standard 
error, 1.96 times standard error, a 95% or 90% confidence interval, or 
standard deviation.
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Model Evaluation

• We can evaluate models trained on the training data by:
• Compute the sample MSE (or metric of interest) on the test set.
• Compute a confidence interval (or related quantity) for the sample MSE.
• Check whether one model’s high-confidence lower-bound is larger than 

another model’s high-confidence upper bound.

Sample MSE, Model A

Sample MSE, Model B

Cannot conclude that Model A is 
better than Model B with 
sufficient confidence.

9



Model Evaluation

• We can evaluate models trained on the training data by:
• Compute the sample MSE (or metric of interest) on the test set.
• Compute a confidence interval (or related quantity) for the sample MSE.
• Check whether one model’s high-confidence lower-bound is larger than 

another model’s high-confidence upper bound.

Sample MSE, Model A

Sample MSE, Model B

Can conclude that Model A is 
better than Model B with 
sufficient confidence.

10



Algorithm Evaluation

• Consider the following:
• Train model A using one algorithm.
• Train model B using another algorithm.
• Evaluate models A and B using confidence intervals.

• This does not fully evaluate the two algorithms.
• It fails to capture how much the learned models vary with different 

training sets.
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K-Fold Cross-Validation

• Split data D into k equal-sized subsets (folds), F1, F2, …, Fk
• For i from 1 to k:

• Set aside fold Fi as the validation set, and combine the remaining k-1 
folds to form a training set.

• Train the model M on the k-1 training folds using the ML algorithm being 
evaluated.

• Evaluate the performance of model M on the validation fold Fi. Store the 
performance metric Pi

• Calculate the average performance metric: mean(P1,P2, …, Pk).
• Optionally, calculate other statistics (like standard error) of the 

performance metrics across the folds.
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Train/Validation/Test Sets (New Material!)

• Validation sets are often used to automatically tune 
hyperparameters.

• The data is split into three sets: train, validation, and test. The 
following procedure is then used:
• For each hyperparameter setting:

• Train a model using the training data.
• Evaluate the model using the validation data.

• Select the hyperparameter settings that achieve the best evaluation on 
the validation set.

• Train a model using all the training and validation data and the 
hyperparameters that achieved the best evaluation.

• Evaluate the model using the testing set.
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Nested Cross-Validation: 
Train/Test/Validation + k-Fold Cross-Validation
• Train/Test/Validation does not account for the variance that results 

from the selection of the training and validation sets.
• It evaluates the performance of the one model learned from a specific pair of 

training and validation sets.

• The use of train/validation/test sets can be combined with k-fold cross-
validation to account for this additional variance.
• This method is called nested cross-validation.

• Use cross-validation to evaluate the performance of an algorithm.
• Within the algorithm, use cross-validation to optimize hyperparameters.

• While principled, this method is computationally intensive.
• For this introductory course you should understand the general idea behind 

nested cross-validation, but need not study the algorithmic details.
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End
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