
COMPSCI 389
Introduction to Machine Learning

Validation Sets (and Review of NN Variants and Model
Evaluation)

Prof. Philip S. Thomas (pthomas@cs.umass.edu)

1

Nearest Neighbors (NN)

• Given a query, find the label associated with the closest point in
the training data.

• “Closest” is determined using Euclidean distance:

dist 𝑥, 𝑥′ = ෍

𝑖=1

𝑛

𝑥𝑖 − 𝑥𝑖
′ 2

• If multiple points equally near, break ties arbitrarily.
• For example, return the label of just one of the nearest neighbors.

2

K-Nearest Neighbors (k-NN)

• NN was unreasonable when many points are equally close but
have different labels.

• NN is also unreasonable when many points are close to the query
(but not precisely equal in distance).

• k-NN improves upon NN by returning the average of the labels of
the k nearest neighbors.
• Data structures like KD-Trees and Ball-Trees can be used to efficiently find

the k nearest neighbors to a query point.

3

Weighted k-Nearest Neighbors (Weighted k-NN)

• The k-NN algorithm does not distinguish between the cases:
• All k neighbors are roughly the same distance from the query.
• Some of the k neighbors are much closer than others.

• Instead, it gives the same weight to all k neighbors.
• Weighted k-NN weights each of the k points based on their

distance:

ො𝑦 = ෍

𝑖=1

𝑘
𝑤𝑖

σ𝑗=1
𝑘 𝑤𝑗

𝑦𝑖
𝑁𝑁

𝑖th nearest
neighbor’s label

4

Weighted k-NN (cont.)

• Many choices of weighting functions.
• One common choice is the Gaussian kernel:

𝑤𝑖 = 𝑒
−

dist 𝑥𝑖
𝑁𝑁, 𝑥query

2

2𝜎2

• Sigma scales how quickly weights decrease with distance.

𝑖th nearest neighbor’s features

Query features

5

Tuning Hyperparameters

• Hyperparameter: a variable, like k, that changes the behavior of
the algorithm, and which is often set by the data scientist applying
the algorithm.

• Grid Search: Specify possible values for each hyperparameter
(often equally spaced), train models using all possible
combinations of hyperparameter settings, and select the ones
that result in the best fit.

6

Classification with NN-Variants

• NN: No changes needed!
• k-NN: The predicted label comes from a majority vote of the k

nearest neighbors.
• Weighted k-NN: Each neighbor’s vote is weighted in the vote.

• Note: We will focus on regression for a while and will then return
to classification after a few lectures.

7

Confidence Intervals

• We shouldn’t always trust the sample performance metrics.
• Sample MSE: 1

𝑛
σ𝑖=1

𝑛 𝑦𝑖 − ො𝑦𝑖
2

• This is a statistic or sample statistic.
• It could be quite different from the true MSE: 𝐄 𝑌 − ෠𝑌

2
.

• This is a parameter or population statistic.

• We can compute confidence intervals for sample statistics.
• If the sample statistic is an average (of normally distributed values) then

± 1.96 × SE is a 95% confidence interval.
• SE is the standard error: 𝑆𝐸 =

𝜎

𝑛
, where 𝜎 is the sample standard deviation with Bessel’s

correction.

• We often report performance metrics with ±𝑋, where X is standard
error, 1.96 times standard error, a 95% or 90% confidence interval, or
standard deviation.

8

Model Evaluation

• We can evaluate models trained on the training data by:
• Compute the sample MSE (or metric of interest) on the test set.
• Compute a confidence interval (or related quantity) for the sample MSE.
• Check whether one model’s high-confidence lower-bound is larger than

another model’s high-confidence upper bound.

Sample MSE, Model A

Sample MSE, Model B

Cannot conclude that Model A is
better than Model B with
sufficient confidence.

9

Model Evaluation

• We can evaluate models trained on the training data by:
• Compute the sample MSE (or metric of interest) on the test set.
• Compute a confidence interval (or related quantity) for the sample MSE.
• Check whether one model’s high-confidence lower-bound is larger than

another model’s high-confidence upper bound.

Sample MSE, Model A

Sample MSE, Model B

Can conclude that Model A is
better than Model B with
sufficient confidence.

10

Algorithm Evaluation

• Consider the following:
• Train model A using one algorithm.
• Train model B using another algorithm.
• Evaluate models A and B using confidence intervals.

• This does not fully evaluate the two algorithms.
• It fails to capture how much the learned models vary with different

training sets.

11

K-Fold Cross-Validation

• Split data D into k equal-sized subsets (folds), F1, F2, …, Fk
• For i from 1 to k:

• Set aside fold Fi as the validation set, and combine the remaining k-1
folds to form a training set.

• Train the model M on the k-1 training folds using the ML algorithm being
evaluated.

• Evaluate the performance of model M on the validation fold Fi. Store the
performance metric Pi

• Calculate the average performance metric: mean(P1,P2, …, Pk).
• Optionally, calculate other statistics (like standard error) of the

performance metrics across the folds.

12

Train/Validation/Test Sets (New Material!)

• Validation sets are often used to automatically tune
hyperparameters.

• The data is split into three sets: train, validation, and test. The
following procedure is then used:
• For each hyperparameter setting:

• Train a model using the training data.
• Evaluate the model using the validation data.

• Select the hyperparameter settings that achieve the best evaluation on
the validation set.

• Train a model using all the training and validation data and the
hyperparameters that achieved the best evaluation.

• Evaluate the model using the testing set.

13

Nested Cross-Validation:
Train/Test/Validation + k-Fold Cross-Validation
• Train/Test/Validation does not account for the variance that results

from the selection of the training and validation sets.
• It evaluates the performance of the one model learned from a specific pair of

training and validation sets.

• The use of train/validation/test sets can be combined with k-fold cross-
validation to account for this additional variance.
• This method is called nested cross-validation.

• Use cross-validation to evaluate the performance of an algorithm.
• Within the algorithm, use cross-validation to optimize hyperparameters.

• While principled, this method is computationally intensive.
• For this introductory course you should understand the general idea behind

nested cross-validation, but need not study the algorithmic details.

14

End

15

	Slide 1: COMPSCI 389 Introduction to Machine Learning
	Slide 2: Nearest Neighbors (NN)
	Slide 3: K-Nearest Neighbors (k-NN)
	Slide 4: Weighted k-Nearest Neighbors (Weighted k-NN)
	Slide 5: Weighted k-NN (cont.)
	Slide 6: Tuning Hyperparameters
	Slide 7: Classification with NN-Variants
	Slide 8: Confidence Intervals
	Slide 9: Model Evaluation
	Slide 10: Model Evaluation
	Slide 11: Algorithm Evaluation
	Slide 12: K-Fold Cross-Validation
	Slide 13: Train/Validation/Test Sets (New Material!)
	Slide 14: Nested Cross-Validation: Train/Test/Validation + k-Fold Cross-Validation
	Slide 15: End

